Putting a Compass on the Map of Elections
N. Boehmer, R. Bredereck, P. Faliszewski, R. Niedermeier, S. Szufa
IJCAI 2021
Abstract
In their AAMAS 2020 paper, Szufa et al. presented a "map of elections" that visualizes a set of 800 elections generated from various statistical cultures. While similar elections are grouped together on this map, there is no obvious interpretation of the elections' positions. We provide such an interpretation by introducing four canonical “extreme” elections, acting as a compass on the map. We use them to analyze both a dataset provided by Szufa et al. and a number of real-life elections. In effect, we find a new parameterization of the Mallows model, based on measuring the expected swap distance from the central preference order, and show that it is useful for capturing real-life scenarios.
Experiments:
Election type |
Culture |
Candidates |
Voters |
Instances |
Parameters |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00014 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00034 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00007 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00016 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00012 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00049 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00006 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00043 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00008 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00043 |
Ordinal |
PrefLib |
None |
None |
None |
https://www.preflib.org/dataset/00001 |
Ordinal |
Euclidean 1D |
{10} |
{100} |
None |
Uniform 1D {[0,1]} |
Ordinal |
Euclidean 2D |
{10} |
{100} |
None |
Uniform 2D ($[0,1]^2$); Uniform 2D Sphere ($(0, 0)$ $r=1$) |
Ordinal |
Euclidean 3D-or-more |
{10} |
{100} |
None |
Uniform 3D ($[0,1]^3$); Uniform 3D Sphere ($(0, 0)$ $r=1$); Uniform 5D ($[0,1]^5$); Uniform 5D Sphere ($(0, 0)$ $r=1$); Uniform 10D ($[0,1]^10$); Uniform 20D ($[0,1]^20$) |
Ordinal |
Group-Separable |
{10} |
{100} |
None |
None |
Ordinal |
Impartial Culture |
{10} |
{100} |
None |
None |
Ordinal |
Mallows |
{10} |
{100} |
None |
None |
Ordinal |
Single-Crossing |
{10} |
{100} |
None |
None |
Ordinal |
Single-Peaked (Conitzer/Random Peak) |
{10} |
{100} |
None |
None |
Ordinal |
Single-Peaked (Walsh/Uniform) |
{10} |
{100} |
None |
None |
Ordinal |
Urn Model |
{10} |
{100} |
None |
None |
Ordinal |
Mallows |
{20} |
{100} |
None |
None |
Ordinal |
Urn Model |
{20} |
{100} |
None |
None |
Ordinal |
Mallows |
{5, 10, 20, 50, 100} |
{100} |
None |
None |